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1 Introduction

CEMoS is a model environment for handling coupled ODE’s with up to hundreds
equations, state variables, derived variables and parameters. It has been tested for
several types of models (Hamberg, 1996). The idea of CEMoS bases on (Ruardij
et al. , 1995). CEMTK is the graphical user interface for CEMoS. Both are parts
of the Tiger Graphics TigerPack , which also provides MoViE and CEvoS. De-
veloping under CEMoS needs a basic understanding of C programming.
This document describes the functionality of CEMoS in the first part (3) and the
use of CEMTK in the second part (13).
Developing under CEMoS needs a basic understanding of C programming.

License

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

2 Installation of TigerPack

Tiger Graphics TigerPack is written for UNIX or Linux1. It will also run on Mac
OSX. Windows user may use it within a virtual machine.
TigerPack consists of 4 parts:

• CEMoS core system for the simulation
• CEMTK optional but highly recommended GUI for CEMoS
• CEvoS system for evolutionary parameter adaptation for CEMoS models
• MoViE visualization package

1Depending on the different properties of the operating systems the binary files are not portable
from Intel machines to other architectures.

http://www.gnu.org/licenses/


MoViE Manual Chapter 2 – Installation of TigerPack

CEMTK and CEvoS can only be used if CEMoS is installed. MoViE can be used
for any result files with appropriate format (see chapter ??).

2.1 Requirements

All part of TigerPack needs

• csh, tcsh or bash

• gcc-2.6.3 or higher

• make

• Tcl/TK2

optional it is recommended to install

• kwrite or gedit

• gdb with ddd or insight

• grace

• gv

• gnuplot

• kdiff3

Nautilus/Dolphin user should also install

• nautilus-open-terminal

2.2 Installation

Copy the file tigerpack.tar.gz to the directory where do you like to install it and
where do you have write permissions. Extract it by

tar -xzvf tigerpack.tar.gz

Open a command terminal in the directory TIGERPACK and type the command

./setup

After that, logout and login again to set the environmental variables (reboot is NOT
necessary).

2CEMoS itself needs it only for the installtion. This can also be done manually if Tcl/TK is not
available
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2.3 Reinstalling after update

If you already have a running TigerPack and you would like to install an update
Open a terminal in TIGERPACK and type the command ./reinstall. No need to
logout but existing CEMoS models must be recompiled.

3 Getting started with CEMoS

There are two possibilities to operate CEMoS :

1. Operating from a terminal window (for details see 4.3)
To operate CEMoS from a terminal window, the following shell scripts are
installed:

- to compile a model:
compile <model-directory> [debug]

- to start a simulation: run

2. Operating from the graphical user interface CEMTK
To start CEMTK go to the directory where the model (the file cemos.par)
is located or where a new one should be created and give the command cem.
CEMTK is described in part 13.

4 Structure and functionality of CEMoS

CEMoS allows a convenient implementation of different model types, where
the structure of variables is generated automatically from the model definitions.

CEMoS is specialized to support so called box models where similar processes
work in different geographical regions under different environmental conditions.

Therefore every state variable is indexed (box number) and can be attached to
a region.

To connect the regions by transport processes further variables derived from
the states are made available by CEMoS .



The interpretation of the indexes as box numbers is not the only possibility.
It is also possible to simulate one model with different parameter settings in
parallel. Here every index represents a model run with its specific parameter
settings.

CEMoS gives the modeler a high flexibility in controlling the simulation. Dif-
ferent integration methods are available and changes of parameter values during
sensitivity analysis can be made without recompiling the model. Furthermore
the set of variables which may be stored is arbitrary and can be modified for
every simulation without recompiling.

If a complex model shall be divided into several submodels on different time
scales is it quite easy to simulate these submodels with different integration
methods or with different time steps; the underlying concept operator-splitting
is described in 6.2. Here CEMoS takes care of the integration control.

4.1 The structure of models in CEMoS

The location of a model is independent of the location of the CEMoS package.
It may be located in an arbitrary directory. All files needed for a CEMoS model
may be located in one directory, but in the following a better way is described.
If a model shall be implemented in a directory called mymodel the executable
model, the files controlling the simulation and the result files are placed in it
whilst the model code, the parameter files and the files generated by CEMoS
are located in a subdirectory commonly called main. The directory mymodel

should be the working directory during the work with the model. The usual
structure of a model is shown in figure4.1.

The following files must be prepared by the modeler, all other files are generated
automatically:

model.def one file for the central model definitions in main

*.def files containing further definitions of model parameters in main

*.c files containing the C-Code of the model in main

cemos.par one file for the simulation control in $pwd

Additionally an executable shell script or program named install may exist
which will be executed automatically before the compilation starts.

4.2 Implementation of a model

In this section the implementation of a small predator-prey-system is described:



Figure 4.1: The file structure of a model under CEMoS . The white icons are the
files which must be prepared by the modeler, the grey ones are automatically created
during compilation resp. simulation.

Let
a be the growth rate of species X,
b a feeding parameter for the density dependent grazing rate b ·X of the preda-
tor Y and
m the mortality of the predator Y .

Then the model is described by the following ODE-system:

Ẋ = a · X – b · X · Y
Ẏ = b · X · Y – m · Y

To implement this model in a directory called mymodel the following four files
are needed:

1. model.def model definitions in mymodel/main

2. par.def parameter definitions in mymodel/main

3. model.c C-code in mymodel/main

4. cemos.par simulation control in mymodel

The file model.def contains the central variables and parameters:



/*

* Definition of state variables and other global variables:

*/

%numeric double

%states

X[1]={0.5};

Y[1]={1.0};

The line %numeric double forces CEMoS to simulate the model in double
precision, the identifier %states marks the definition block for state variables.
Remark: states must be defined as one dimensional arrays and initial values
must be set.

The file par.def contains the definition of model parameters.

%real_par

a=0.5;

b=0.3;

m=0.1;

%change

m=0.15;

The identifier %real_par marks the block of scalar real parameters. At the
start of the simulation the here defined parameters will get their values. The
identifier %change assigns an overruling of the values from the definition block
by these values without recompiling the model. The content of this file can also
be set in the file model.def, but the splitting into different files keeps care of
the track, if the models become larger. The file model.c contains the C-code
of the model:

#include "struct.h"

#include "par.h"

void model(void)

{

SX[1]=a*X[1]-b*X[1]*Y[1];

SY[1]=b*X[1]*Y[1]-m*Y[1];

}

With the #include-statements the variables defined in the previous files are
made available, where the files struct.h and par.h are automatically gener-
ated by CEMoS from the files model.def and par.def.



The temporary derivatives (Ẋ) are identified in CEMoS by a leading S, these
S variables are automatically generated by CEMoS and available for all state
variables. The file cemos.par contains all information of the duration of a
simulation, the integration method etc., the \%change-statement for variables
and parameters defined in the model.def , as well as the \%store-statement
for the information about variables to be stored.

#include "main/model.def"

%simulation_parameters

starttime=0.0;

endtime=100.0;

storetime=50.0;

outdelt=1.0;

model_dir main

recalc_globals=0;

storestart=1;

%integration_par

mindelt=1.e-15;

maxdelt=1.0;

accuracy=.1e-3;

method=3;

%change

X[1]=0.45;

%store

X[1];Y[1];

The time unit (TU) for the simulation is 1.

In the block %simulation_parameters the simulation parameters are set: the
starting time 0, the endtime 100 TU and the storing interval of 1(outdelt),
where the storing of the results starts with the 50th TU (storetime) . The
line model_dir main specifies where the model code and the parameter files
are located relatively to this file (cemos.par).
In the block %integration_par the integration parameters are set: a minimum
time step of 10–15 TU, a maximum time step of 1 TU, a maximum relatively
error of 0.1 ∗ 10–3, as well as the integration method, here a Runge-Kutta
method of 4th order with time step adaptation (see 6).
Below the line %change the variable X gets a starting value different of its
definition.
Below %store the variables which shall be stored are listed.



4.3 Compilation and simulation start

Note: This section describes the control of CEMoS without the graphical front
end CEMTK (see ??).

It is most convenient to give all CEMoS commands in the model directory
mymodel.
The compilation is then started by the command
compile main

in this directory.
The argument main determines the directory where the model code is located.

With this simple script the compiler flags are set as follows:

(a) Warning levels: -Wall -Wredundant-decls -pedantic

(b) Optimization: -O3

Remark: Those automatically generated fiiles which are only executed once at
simulation start are compiled without optimization because they may be very
long and the optimization by the compiler may need more time than ever can
be gained during execution.

After the successful compilation (and linking, which is automatically done) the
executable model will be moved to the working directory mymodel. The object
files will be archived in a file cemos.a in the main directory. All automatically
generated stuff and all objects will be removed so that the contents of the
model directory stays clear.

The simulation can now be started by the command
run

The simulation results will be stored in a file called result.outc .
If the simulation doesn’t run correctly the model can be debugged. In this case
the debug flag must be set in the compilation. This can be done by starting
the compilation with the command
compile main debug

or
compile debug main

In this case all automatically created files will remain in the model directory
and the compiler flags are as follows:

(a) Warning levels: -Wall -Wredundant-decls -pedantic

(b) Debug: -g



(c) Optimization: none (because debuggers often have problems with opti-
mized executables)

(d) CEMoS specials: -D__verbose__ (to activate extensive information out-
put from CEMoS by conditional compilation)

If all errors are corrected the model should be ’cleaned’ to get rid of the auto-
matically generated files by the command
clean main

and then recompiled without debug option to save simulation time.
Cleaning is also done when the command compile main is given.

4.4 Model definition and data types

During the compilation the .def files are evaluated and the information is
transformed into C-header-files and C-files. This construction allows to modify
parameter values without recompilation. (see also 5).

If f.e. the definition xyz=3.0; is set in the file xxx.def, this variable is available
in every code segment which contains the line #include <xxx.h>. This will
be explained in more detail in the next section.
The file model.def plays an important role. The name of the file may be
expanded in front (f.e. sea_model.def). In any case a file named struct.h

is generated, which disposes the model definitions.

The line #include <struct.h> in a file makes all model definitions available.
Therefore the modeler is not forced to think about the variable handling between
his model files and the integration.

Within CEMoS different data types are available for automatic generation.

For all variables with a dimension the indices start with one and end with the
specified number (an array defined by xyz[15]; can be addressed by xyz[1]

– xyz[15]).

Remark: CEMoS supports one dimensional and two dimensional arrays for
automatic generation.
Remark: All names are case-sensitive: P1c and p1c are different variables.
Remark: The number of characters (alphanumeric) in a variable name mustn’t
exceed 80 including the indices and brackets.



4.4.1 Scalar variables (0D variables)

The basic structure and the content of the file model.def regarding 0D vari-
ables and their derivatives can be seen in following example:

/*

* Definition of state variables and other global variables:

*/

%0D_states

A=0.5;

B=0.9;

%0D_globals

X;

%int_par

iswTRSP=1;

%real_par

Zero=1.0e-6; /* Pseudo-Zero for some processes */

State variables

State variable are of type real. They are the central variables of a model.
They will be integrated.

Example:

%0D_states

A=0.5;

B=0.9;

By evaluation of these lines the following variables are generated and set auto-
matically:

- the variable num_0D_states is set the number of scalar state variables
(here 2)

- a scalar real A of length 5, containing the values of the state variable A

during simulation (same for B).

- a scalar real SA of length 5, containing the values of the right hand sides
of the ODE’s. This values are available for the integration. The vector
elements are set to zero after every integration step (same for SB).



- some internal pointers, which allow access to these variables f.e. for storing
of simulation results.

- a vector real KKK here KKK[2]

- a vector real SKKK here SKKK[2]

The vectors KKK[2], SKKK[2] are associated with A B resp. SA SB, so that
the content of A can be retrieved also by KKK[1], and the statement SKKK[2]=0.0;
also sets SB to zero.

Remark: The identification of thes vector elements and the scalar state vari-
ables is not done instantaneously but only during integration (which means
after complete model execution.

If the simulation is started the state variables are initialized with the given val-
ues.

Remark: Initial values must be set for every state variable!

Remark: The identifier %0D_states is only allowed in the file model.def!

Scalar global variables

Variables of type real. In contrast to state variables global variables are not
initialized and they are not integrated. They are useful if f.e. intermediate
results are needed in different model parts. Variables of this type can be stored,
if they are defined in the file model.def.

For example:

%0D_globals

X

Parameters

Scalar variables of type integer or real. They contain f.e. biological or phys-
ical values which don’t change during the simulation. They can also contain
control values for controlling the simulation

For example:



%int_par

iswTRSP=1;

%real_par

Zero=1.0e-6; /* Pseudo-Zero for some processes */

the values of these parameters may be changed for a simulation by the statement

%change

iswTRSP=0;

Zero=1.0e-12;

without recompiling.

Due to the structure of CEMoS it is allowed to define a constant f.e. by the
following statement:

%real_par

eight_thirds=8./3.;

Attention: This is only allowed in the definition and not in the %change

block! This construction is only valid for the data type integer or real The
evaluation of functions (f.e. Pi=4.0*atan(1.0);) is not allowed.

Remark: These variables can’t be stored.



Local variables

User defined local variables within the model underly the C-syntax. They are
not affected by the integration and can’t be stored.



4.4.2 1D variables

The basic structure and the content of the file model.def regarding 1D vari-
ables and their derivatives can be seen in following example:

/*

* Definition of state variables and other global variables:

*/

%states

X[5]={0.5,2.0,5,0.5,1.0,0.5};

Y[5]={1.8,0.7,0.5,0.5,0.9};

%globals

sumX_Y[5]

%int_par

iswTRSP=1;

%real_par

Zero=1.0e-6; /* Pseudo-Zero for some processes */

%real_ind_par

vol[5]={2.0,1.0,1.0,1.0,1.0};

%int_ind_par

upper[5]={0,1,2,3,4};

%real_derived_from_states

wHI+variable

%int_derived_from_states

itrsp+base

%change

itrspX=11;

itrspY=12;

State variables

State variable are of type real. They are the central variables of a model.
They will be integrated.



Example:

%states

X[5]={0.5,2.0,5,0.5,1.0,0.5};

Y[5]={1.8,0.7,0.5,0.5,0.9};

By evaluation of these lines the following variables are generated and set auto-
matically:

- the variable numstates is set the number of state variables (here 2)

- a vector real X of length 5, containing the values of the state variable X

during simulation (same for Y).

- a vector real SX of length 5, containing the values of the right hand sides
of the ODE’s. This values are available for the integration. The vector
elements are set to zero after every integration step (same for SY).

- some internal pointers, which allow access to these variables f.e. for storing
of simulation results.

- a matrix real CCC here CCC[2][5]

- a matrix real SCCC here SCCC[2][5]

The arrays CCC[2][5], SCCC[2][5] are associated with X Y resp. SX SY, so
that the content of X[3] can be retrieved also by CCC[1][3], and the state-
ment SCCC[2][5]=0.0; also sets SY[5] to zero.

If the simulation is started the state variables are initialized with the given val-
ues.

Remark: Initial values must be set for every state variable!

Remark: The identifier %states is only allowed in the file model.def!

Remark: The scope of indices must be identical for all variables of the type
%states.

Global variables

Vectors of type real. In contrast to state variables global variables are not
initialized and they are not integrated. They are useful if f.e. intermediate
results are needed in different model parts. Variables of this type can be stored,
if they are defined in the file model.def. Then their scope must be the same



as the scope of the state variables.

For example:

%globals

sumX_Y[5]

Parameters

Scalar variables of type integer or real. They contain f.e. biological or phys-
ical values which don’t change during the simulation. They can also contain
control values for controlling the simulation

For example:

%int_par

iswTRSP=1;

%real_par

Zero=1.0e-6; /* Pseudo-Zero for some processes */

the values of these parameters may be changed for a simulation by the statement

%change

iswTRSP=0;

Zero=1.0e-12;

without recompiling.

Due to the structure of CEMoS it is allowed to define a constant f.e. by the
following statement:

%real_par

eight_thirds=8./3.;

Attention: This is only allowed in the definition and not in the %change

block! This construction is only valid for the data type integer or real The
evaluation of functions (f.e. Pi=4.0*atan(1.0);) is not allowed.

Remark: These variables can’t be stored.



Parameter vectors

Vectors of type integer oder real; they are similar to parameters, but they
are indexed. They contain f.e. biological or physical values which don’t change
during the simulation, but are different for the different boxes.

For example:

%real_ind_par

vol[5]={2.0,1.0,1.0,1.0,1.0};

%int_ind_par

upper[5]={0,1,2,3,4};

They may be changed for a simulation by

%change

vol[1-2]={3.0,10.0};

upper[1-2]={2,1};

without recompiling.

Remark: In %change blocks the numbers in [...] are treated as lists, such
vol[2]={3.0,10.0} will set vol[2] to 3.0 and will not affect vol[1].
Remark: These variables can’t be stored.

Derived variables

Arrays of type integer oder real. There are two different types available,
+variable and +base.
These types are mainly needed to structure large models and allow (similar to
the matrices CCC and SCCC) loops over all state variables. The scalar form
...+base is useful to activate or deactivate processes for some variables, f.e.
transport processes can be implemented for all variables similarly, but are acti-
vated only for a few, using these variable to control them.
The type +variable is the indexed version, to have also control over the boxes.
The definition of these variables is only allowed in the file model.def . They
are strongly associated to the definition of state variables.
There are three possibilities to get variables derived from the definition of state
variables

- %real_derived_from_states in the variants +variable and +base



- %global_derived_from_states only as +variable

- %int_derived_from_states in the variants +variable and +base

which are handled differently during the simulation:

- %real_derived_from_states +variable are zeroised every time be-
fore the model is executed from an integration method and additionally
after every storing of model results, if a recalculation of external processes
(e.g. time series from data files or interpolation functions) before storing
is forced by setting recalc_globals=1.

- %global_derived_from_states +variable are zeroised after every
storing of model results.

- %int_derived_from_states +variable are zeroised every time before
the model is executed from and integration method and additionally after
every storing of model results, if a recalculation of external processes (e.g.
time series from data files or interploation functions) before storing is
forced by setting recalc_globals=1.

All derived variables of type +base are not affected by the integration or the
storage control. Some examples as a little help:

%real derived from states

The definition

%real_derived_from_states

wHI+variable

pA+base

generates the following variables:

- The two vectors wHIX[5] and wHIY[5] of type real, and a matrix wHICCC[2][5]
of type real. These variables are not integrated, but set to zero everytime
before the model is executed during integration.

- A parameter vector pACCC[2] of type real corresponding to the pointers
*pAX, *pAY. These variables are not affected by the integration.

%global derived from states

The definition



%global_derived_from_states

wDO+variable

generates the following variables:

- The two vectors wDOX[5] and wDOY[5] of type real, and a matrix wDOCCC[2][5]
of type real. These variables are not integrated, but set to zero everytime
after results are stored.

%int derived from states

The definition

%int_derived_from_states

iH+variable

itrsp+base

generates the following variables:

- The two vectors iHX[5] and iHY[5] of type integer, and a matrix iHCCC[2][5]
of type integer. These variables are not integrated, but set to zero every-
time after results are stored.

- A parameter vector itrCCC[2] corresponding to the pointers *itrX, *itrY.
These variables are not affected by the integration.

The values of +base parameters can only be set (and may be changed) by:

%change

itrspX=11;

itrspY=12;

iHX[1-5]={1.0,2.0,3.0,4.0,0.0};

iHY[1-5]={0.0,1.0,2.0,3.0,4.0};

Local variables

User defined local variables within the model underly the C-syntax. They are
not affected by the integration and can’t be stored.



4.4.3 2D variables

The extension of CEMoS to provide matrices of variables which are managed
and which can be handled in the same way as vectors (1D variables) is a first
step to the implementation of partial differential equations with CEMoS .
Anyhow, there are some restrictions in the current implementation which are
described at the palce where they become effective. The basic structure and
the content of the file model.def regarding 2D variables and their derivatives
can be seen in following example:

/* 2D variables */

%2D_states

AAA2D[5][7]={7*1,7*2,7*3,

4,4,4,4,4,4,4,7*5};

BBB2D[5][7]={7*1,7*2,7*3,

4,4,4,4,4,4,4,7*5};

%2D_globals

aaa2d[5][7]

bbb2d[5][7]

%2D_real_ind_par

rrr2D[5][7]={7*1,7*2,7*3,4,4,4,4,4,4,4,7*5};

%2D_int_ind_par

iii2D[5][7]={7*1,7*2,7*3,4,4,4,4,4,4,4,7*5};

%2D_real_derived_from_states

xxx2d+variable

fff2d+base

%2D_int_derived_from_states

vvv2d+variable

bbb2d+base

Remark: Statements like {7*1,3*2,4*9,7*3,....} are expanded by CE-
MoS to {1,1,1,1,1,1,1,2,2,2,9,9,9,9,3,3,3,3,3,3,3,....} and line
breaks may appear in those statements as well as standard C comments /*Comment */.

2D State variables

Same as 1D-state variables 2D-state variables are of type real. They are the
central variables of a model. They will be integrated.



Example:

%2D_states

AAA2D[5][7]={7*1,7*2,7*3,

4,4,4,4,4,4,4,7*5};

BBB2D[5][7]={7*1,7*2,7*3,

4,4,4,4,4,4,4,7*5};

By evaluation of these lines the following variables are generated and set auto-
matically:

- the variable num_2D_states is set the number of state variables (here 2)

- a matrix real AAA2D with 5 columns and 7 lines, containing the values
of the state variable AAA2D during simulation (same for BBB2D).

- a vector real SAAA2D with 5 columns and 7 lines, containing the values
of the right hand sides of the ODE’s. This values are available for the
integration. The matrix elements are set to zero after every integration
step (same for SBBB2D).

- some internal pointers, which allow access to these variables f.e. for storing
of simulation results.

- a so called 3D-tensor real DDD here DDD[2][5][7]

- a 3D-tensor real SDDD here SDDD[2][5][7]

The arrays DDD[2][5][7], SDDD[2][5][7] are associated with AAA2D BBB2D

resp. SAAA2D SBBB2D, so that the content of AAA2D[3][4] can be retrieved
also by DDD[1][3][4], and the statement SDDD[2][3][5]=0.0; also sets
SBBB2D[3][5] to zero.

If the simulation is started the 2D state variables are initialized with the given
values.

Remark: Initial values must be set for every 2D state variable!
Remark: The identifier %2D_states is only allowed in the file model.def!
Remark: The scope of indices must be identical for all variables of the type
%2D_states.

Global variables

Matrices of type real. In contrast to 2D state variables 2D global variables are
not initialized and they are not integrated. They are useful if f.e. intermediate
results are needed in different model parts. Variables of this type can be stored,



if they are defined in the file model.def. Then their scope must be the same
as the scope of the 2D state variables.
For example:

%2D_globals

aaa2d[5][7]

bbb2d[5][7]

Parameter matrices

Matrices of type integer oder real; they are similar to parameters, but they
are indexed. They contain f.e. biological or physical values which don’t change
during the simulation, but are different for the different grid cells.
For example:

%2D_real_ind_par

rrr2D[5][7]={7*1,7*2,7*3,4,4,4,4,4,4,4,7*5};

%2D_int_ind_par

iii2D[5][7]={7*1,7*2,7*3,4,4,4,4,4,4,4,7*5};

They may be changed for a simulation by

%change

rrr2D[3][1-2]={3.0,10.0};

iii2D[2][1-2]={2,1};

without recompiling. Remark: These variables can’t be stored.

Derived variables

Arrays of type integer oder real.

There are two different types available, +variable and +base.
These types are mainly needed to structure large models and allow (similar
to the tensors DDD and SDDD) loops over all state variables. The scalar form
...+base is useful to activate or deactivate processes for some variables, f.e.
transport processes can be implemented for all variables similarly, but are acti-
vated only for a few, using these variable to control them.
The type +variable is the indexed version, to have also control over the grid
cells.
The definition of these variables is only allowed in the file model.def . They
are strongly associated to the definition of 2D state variables.
There are three possibilities to get variables derived from the definition of 2D
state variables



- %2D_real_derived_from_states in the variants +variable and +base

- %2D_global_derived_from_states only as +variable

- %2D_int_derived_from_states in the variants +variable and +base

which are handled differently during the simulation:

- %2D_real_derived_from_states +variable are zeroised every time
before the model is executed from an integration method and additionally
after every storing of model results, if a recalculation of external processes
(e.g. time series from data files or interpolation functions) before storing
is forced by setting recalc_globals=1.

- %2D_global_derived_from_states +variable are zeroised after ev-
ery storing of model results.

- %2D_int_derived_from_states +variable are zeroised every time
before the model is executed from an integration method and additionally
after every storing of model results, if a recalculation of external processes
(e.g. time series from data files or interploation functions) before storing
is forced by setting recalc_globals=1.

All derived variables of type +base are not affected by the integration or the
storage control.

Some examples as a little help:

%2D real derived from states

The definition

%2D_real_derived_from_states

xxx2d+variable

fff2d+base

generates the following variables:

- The two matrices xxx2dAAA2D[5][7] and xxx2dBBB2D[5][7] of type
real, and a tensor xxx2dDDD[2][5][7] of type real. These variables are
not integrated, but set to zero everytime before the model is executed
during integration.

- A parameter vector fff2dDDD[2] of type real corresponding to the point-
ers *fff2dAAA2D, *fff2dBBB2D. These variables are not affected by the
integration.



%2D global derived from states

The definition

%global_derived_from_states

ggg2d+variable

generates the following variables:

- The two matrices ggg2dAAA2D[5][7] and ggg2dBBB2D[5][7] of type
real, and a tensor ggg2dDDD[2][5][7] of type real. These variables are
not integrated, but set to zero everytime after results are stored.

%2D int derived from states

The definition

%2D_int_derived_from_states

vvv2d+variable

bbb2d+base

generates the following variables:

- The two matrices vvv2dAAA2D[5][7] and vvv2dBBB2D[5][7] of type
integer, and a tensor vvv2dDDD[2][5][7] of type integer. These vari-
ables are not integrated, but set to zero everytime after results are stored.

- A parameter vector bbb2dDDD[2] corresponding to the pointers *bbb2dAAA2D, *bbb2dBBB2D.
These variables are not affected by the integration.

The values of +base parameters can only be set (and may be changed) by:

%change

bbb2dAAA2D=21;

bbb2dBBB2D=42;

vvv2dAAA2D[5][7]={7*1,7*2,7*3,4,4,4,4,4,4,4,7*5};

vvv2dBBB2D[5][7]={7*5,7*6,7*8,4,4,4,4,4,4,4,7*9};

4.4.4 User defined structures

Actually user defined structures are only allowed within the model code for
structuring the model. They are not affected by the integration and can’t be
stored.



4.4.5 Preprocessor-statements

All files containing definitions (.def files) are prepared by the C preprocessor
during compilation and once again, when the simulation is started. Therefore
all preprocessor statements such as comments, #include-statements etc. may
be used in variable definitions and %change-bocks as well as in %store-blocks.

Remark: During simulation the file model.def is not checked for change

blocks, but the file cemos.par is. Therefore the file model.def must be in-
cluded in the file cemos.par by the statement #include "main/model.def"

to get changes evaluated. All variables defined in the file model.def may be
changed by %change in the file cemos.par.

4.4.6 Conditional compiling

The file model.def may contain lines of the type %setup ABCD. If lines starting
with %setup appear, a file compiler_setup.h is generated, which contains
just the lines with the respective compiler directives:
#define ABCD (looking at the a.m. example)
The file compiler_setup.h is automatically included via struct.h, but may
also be included in all *.def files, as well as in all files being included in those
*.def and the cemos.par. Such, contructions like:

#if defined(ABCD)

%store

X1x[1-3];

#elif

%store

X1x[1,2];X2x[1-3];

#endif

are possible, as well as all conditional compiling within the model code files,
to have an easy possibilty to generate model variants without having parallel
setups in different directories.
If no line starting with %setup appears in the file model.def, the result is an
empty file compiler_setup.h.



5 Controlling the simulation

The following example explains the structure and content of the file cemos.par:

%boxes_not_active 2

#include "main/model.def"

%simulation_parameters

starttime=0.0;

endtime=720.0;

outdelt=1.0;

year=88.0;

cycle=360.0;

model_dir main

multi=2;

recalc_globals=1;

storestart=0;

%integration_par1

mindelt=1.e-15;

maxdelt=1.0;

accuracy=.0001;

method=3;

%integration_par2

mindelt=1.e-15;

maxdelt=1.0;

relrate=1.0;

relchange=0.5;

method=1;

%change

iswTRSP=1;

%change

X[1-2]={2.0,0.5};

Y[1-2]={1.0,0.5};

%store

X[1-2];

Y[1-2];

With the statement %boxes_not_active boxes are set not to be considered



by the integration. The initial values of these boxes are kept constant during
simulation. This is f.e. useful for transport processes over boundaries. This
statement is optional.

With the statement #include "main/model.def" all information from the
file main/model.def is available and may be changed in the %change block.
(this is important if derived variables of the type +base shall be initialized with
values – this is only possible in the %change block and not in the definition).
This statement is optional.

The block %simulation_par is already described in 4.2.
For the statement multi=2; see 6.2.

The setting recalc_globals=1 forces a recalculation of the model without
integration to get global and global_derived_from_states recalculated
before storing simulation results. This is very helpful, if the model is run
with different integration methods on different time steps (operator splitting,
see 6.2), and e.g. not all derived variables are effected by all integration
methods, but shall be stored for diagnostic purposes. The default setting is
recalc_globals=0. For further information see appendix 11.

For the parameter storestart see section 8 In %change all parameters may
be modified which have been defined in the file model.def, f.e. state variables
can get new initial values here without recompiling the model.

Furthermore files may be included by #include statements to keep care of the
track.

6 Integration methods

CEMoS supports several integration methods. They are controlled in the block
%integration_par in the file cemos.par by the parameter method:



method numerical integration method
0 Fixstep (FixStep): fix timestep for discrete models

-1,1 Euler: Euler’s method with time step adaptation1

-2,2 RK2: Runge-Kutta’s-method 2nd order with time step adaptation,
controlling the local error by 3rd order method

-3,3 RK4: Runge-Kutta’s-method 4th order with time step adaptation,
controlling the local error by the same method with the half timestep
(’classical Runge-Kutta-method’)

-4,4 RKCK: Runge-Kutta-Cash-Karp-method 4th order with time step adaptation,
controlling the local error by an embedded fifth order method
(’classical Runge-Kutta-method’)

-9,9 Backward Euler: Euler’s method with time step adaptation.
The correction term is calculated for the end time of the integration step, thus,
this method is more stable than the normal Euler method -1,1

-99,99 No Integration (NoInt): Special and fast handling of the model to evaluate
time series and access external data without any effect to state variables

If the positive value is chosen the integration allows only positive values for
state variables. This is useful if the state variables represent biomasses or con-
centrations.
If the negative value is chosen the state variables can also become negative.

The following table lists the methods and their control variables:

method : Euler RK2 RK4 RKCK BackEuler
maxdelt : + + + + +
mindelt : + + + + +
relrate : + +
relchange : + +
accuracy : + + +

FixStep (0) and NoInt (-99,99) are controlled by maxdelt, only.
maxdelt: maximum time step (for fixstep the time step).
mindelt: minimum time step, if the time step adaptation fall short of it, CE-
MoS stops the simulation.
relrate: maximum allowed relative rate (maximum value for the fraction
|Ẋ(t)|/|X(t)| of a state variable). If the fraction exceeds this value the time
step will be reduced until the fraction reaches relrate. .
relchange:maximum allowed relative rate if the rate changes its sign. If in
this case the fraction |Ẋ(t)|/|X(t)| exceeds relchange the time step will be
reduced until their fraction reaches relchange. If only positive values for state
variables are allowed (method=1),relchange is also valid if a state variable
would become negative.



accuracy: maximum relative local error for the Runge-Kutta-methods; if the
error exceeds this value the time step will be reduced. The error estimation is
done by a method of higher order.
All methods are implemented in such a way that after a time step adaptation
the integration tries to reach the maximum time step again as fast as possible.
During a simulation the integration is started again for every time step, and
not once for the whole simulation. Here the results of the previous time steps
are the initial values for the next. This makes it quite more easy to guarantee
the storing of equidistant results and shortens the simulation time. If only the
result at the end of the simulation is of interest, the variables maxdelt and
outdelt may be set to the difference of endtime and starttime.

6.1 Runge-Kutta methods

Let

y′ = f(t, y(t)), y(t0) = y0

be the given initial value problem. For the correct solution Yk at step k the
solution at k + 1 are calculated as follows.

6.1.1 Runge-Kutta method 2nd/3rd order

yk+1 = yk + a2 predictor

yk+1 = yk +
1

6
[a1 + 4a2 + a3] corrector

a1 = hf(tk, yk)

a2 = hf(tk +
1

2
h, yk +

1

2
a1)

a3 = hf(tk + h, yk – a1 + 2a2)

h is the step size from step k to step k + 1.

The results are mostly better than of order 2 because the predictor method
is of third order and the results of the corrector method are taken for further
calculations. This method is recommended for large models because the model
will be evaluated only three times per time step.



6.1.2 Runge-Kutta method 4th order

yk+1 = yk +
1

6
[a1 + 2a2 + 2a3 + a4]

a1 = hf(tk, yk)

a2 = hf(tk +
1

2
h, yk +

1

2
a1)

a3 = hf(tk +
1

2
h, yk +

1

2
a2)

a4 = hf(tk + h, yk + a3)

In CEMoS the predictor and the corrector method are both of fourth order.
The corrector method works with a modified time step. This method has the
highest accuracy but evaluates the model eleven times per time step. It is only
recommended for small models.

h is the step size from step k to step k + 1.

For the theoretical background see Engeln-Müllges & Reuter (1988) and Kohlmeier
(1995)

6.1.3 Cash-Karp Runge-Kutta method

To gain comparability to more modern integration methods a fifth order Runge-
Kutta with an embedded fourth order method has been inegrated to CEMoS .
This method is adaptive regarding the time step and needs only six evaluation
of the model per time step. Details can be found in the code of CEMoS .



6.2 The concept of operator-splitting

Under the conditions of the example above it is assumed that the two parts (op-
erators) Ẋ = . . . and Ẏ = . . . need different integration methods . This might
be necessary to reach a high numeric accuracy or to shorten the simulation
time (in this underlying example these reasons are not given, but the technical
implementation can be more easily described with such a small example) .

CEMoS supports the parallel handling of different integration methods with
only minor effort during the model implementation.

The principle flow diagram for a model with two separated processes is shown
in figure(6.1).

Figure 6.1: The principal progress of the different integrations during a time step
using operator-splitting

Let ts be the starting time and te the endtime, and let ∆t1 = 1
2∆t2 be the

maximum time steps and let the simulation parameter multi be set to 2 (the
other simulation-and integration parameter are of minor interest in this con-
text).
The time interval ti+1 – ti is equidistantly divided into steps of length δ =



min{∆ti}i=1,2 , where ti+1 – ti = max{∆ti}i=1,2.

If during the simulation a ∆ti becomes a multiple of δ, the integration method
Ii is called and the global parameter assign is set to i for identification. Every
integration method calls the whole model (model()) without distinction. In
the model the parameter assign controls the execution of the processes. If
only one integration method is active (multi=1 or unset), assign is set to -1,
to activate all processes.

The implementation of the example must be modified only slightly to activate
the operator splitting:

#include "struct.h"

#include "par.h"

void model(void)

{

if (assign==-1 || assign==1) SX[1]=a*X[1]-b*X[1]*Y[1];

if (assign==-1 || assign==2) SY[1]=b*X[1]*Y[1]-m*Y[1];

}

The case assign == -1 is valid during the very first execution of the model
(without integration) to run through initializing routines and preparation f.e.
of access to external data sets. In the file cemos.par now two blocks of
integration parameters are needed. Additionally the parameter multi has to
be set:

#include "main/model.def"

%simulation_parameters

starttime=0.0;

endtime=100.0;

outdelt=1.0;

model_dir main

multi=2;

%integration_par1

mindelt=1.e-15;

maxdelt=0.5;

accuracy=.00001;

method=3;

%integration_par2



mindelt=1.e-6;

maxdelt=2.0;

accuracy=.01;

method=2;

%store

X[1];Y[1];

Remark: If multi is set to 1 or is not set anywhere, all processes will be
controlled by the parameters set in the block %integration_par1.

7 CEMoS Variables

In this section the automatically generated variables are explained.
They can be made available everywhere in the model code by the statement
#include <struct.h.> and can be used to control the model or for debug-
ging.

7.1 0D variable related information

Additional to the variables which can be stored
(%0D_states, %0D_globals)
the following variables are made available:

type of variable number in name in
state variables num 0D states 0D state names[1-number]

global variables num 0D globals 0D global names[1-number]

7.2 1D variable related information

Additional to the variables which can be stored
(%states, %globals,%float_derived_from_states’+variable’)
the following variables are made available:



type of variable number in name in
state variables num states state names[1-number]

global variables num globals global names[1-number]

derived variables num float derivs float derivs[1-number]

num int derivs int derivs[1-number]

With these variables is it possible to loop over all variables, check their names
and get a fast overview of the model run (especially during debugging).

7.3 2D variable related information

Additional to the variables which can be stored
(%2D_states, %2D_globals,%2D_float_derived_from_states’+variable’)
the following variables are made available:

type of variable number in name in
state variables num 2D states 2D state names[1-number]

global variables num 2D globals 2D global names[1-number]

derived variables num 2D float derivs 2D float derivs[1-number]

num 2D int derivs 2D int derivs[1-number]

With these variables is it possible to loop over all variables, check their names
and get a fast overview of the model run (especially during debugging).

7.4 Simulation- and integration related informations

The following variables and their related values are available:

starttime, endtime starting and ending time of the simulation
storetime optional, simulation time when storing of results starts
infotime optional, a .info file is written after every infotime steps resp. simulation days
year, cycle optional, starting year and cycle of the model

(f.e for control of external data series)
sim time, delt actual time and time step during simulation
mindelt, maxdelt minimum and maximum time step of the

actual integration method
method, assign actual integration method and process identifier
int time, day of year integer of sim time and int time mod cycle

Remark: The old names startim and storetim are still valid.



7.4.1 Info time

The value of the variable infotime is the time where a .info file is written.
After that every infotime time steps .info files are written until endtime is
reached. The .info files contain the values of all state variables at that time.
Thus, a model can be restarted again by including this file in the cemos.par
under the change statment as new initial conditions. This is useful if intermedi-
ate values of long runs are needed to restart the model resp. if long runs don’t
reach the endtime.

Example:
With starttime=3, endtime=100, infotime=20 info files are written at
time 20, 40, 60, 80, 100. The same happens for starttime=0 or starttime=17.

7.5 Information related to the 1D model structure

These variables allow to activate or deactivate specified boxes, in contrast to
the variable assign, which allows to attach specified processes to certain inte-
gration methods.

With these variables boxes can be taken out of the integration to get f.e.
constant boundary conditions for other boxes (see also 5).

n comp number of model boxes
l comp number of active boxes
i com vector of length l comp, containing the numbers (indices) of active boxes

A loop over all model boxes should be implemented in the following way:

for (i=1;i<=l_comp;i++)

{

box=i_com[i];

SX[box]=.......

.

.

.

}

Normally this corresponds to a loop like for (box=1;box<=n_comp,box++).
But if f.e. in the file cemos.par the statement boxes_not_active 1-2 is
present, the construction above guarantees that boxes 1 and 2 are not evaluated
and will keep their initial values.
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7.6 Information related to the 2D model structure

g comp1 number of grid columns
g comp2 number of grid lines

A loop over all model grid cells should be implemented in the following way:

for (i=1;i<=g_comp1;i++)

{

for (j=1;i<=g_comp2;i++)

{

SAAA2D[i][j]=.......

.

.

.

}

7.7 Lists of variables and their handling

To have easy an comfortable control on the simulation process, the execution
of the model and the storing of simulation results, CEMoS provides functions
with a special syntax compared to C. The rules to be followed to gain the
complete functionality of models in the CEMoS environment are given below.

Parameter and values are attached by lists. Here the C-syntax has been ex-
tended so that single elements of vectors can be changed. The statement

%change

t[1-3,5,8-10]={1,2,3,4,5,6,7};

t[1]=1,t[2]=2,t[3]=3,t[5]=4,t[8]=5,t[9]=6,t[10]=7.

It has to be remarked that ’inner’ lists (lists in [...] or in {...}) are separated
by commas while ’external’ lists (f.e. iswt1=1; iswt2=0;) are separated by
semicolons.

41



8 Storing in CEMoS

8.1 General

The model output will be stored every outdelt. If maxdelt exceeds outdelt
outdelt will be set to maxdelt to avoid redundant storing. The storing nor-
mally starts at starttime. If the variable storetime is set storing starts at
storetime.

If the simulation parameter storestart is set to 0 simulation results are stored
every time before the integration starts, if storestart=1 the simulation results
are stored after the integration. To have control on this behaviour is helpful,
when simulation results which are depending on time series shall be adjusted
to those timeseries or measurement data.

All indexed variables including all globals and derived variables defined in the
model.def can be stored.

The values will be stored for every outdelt set in cemos.par. At the begin-
ning of a simulation at starttime resp. storetime all values will be stored
for the first time. Then, all state variables will hold their initial values, all
other variables will hold the values after one model evaluation. Such all time
dependent values are evaluated at that time.

For every outdelt the state variables will hold the values after the integration,
while all globals hold the values of the last model evaluation. The values which
are stored depend on the integration method. In the case of FIXSTEP the
states at time t + ∆t contain the integrated values from time t, the globals at
time t + ∆t hold the values of time t because the model is evaluated at time
t to determine the rates of change.

In the case of the Runge-Kutta-Method RK4 the result file contains the global
values from the fourth model evaluation (see 6.1.2).

If the model is set up with operator splitting the global and derived variables
contain the values of the last evaluation of the last integration method. Such,
derived variables which are not used in the last integration are stored as zero
because they are set to zero before starting the last integration.

8.2 Storing of 0D variables

All 0D variables which should be stored during simulation must be set in the
%0D_store section of the cemos.par. This can be done in the following form

%0D_store



A;

B;

or shorter

%store

A;B;

Every statement should be closed by ;. It is also possible to include a file which
contains all variables to be stored in the correct syntax:

%0D_store

#include "store0.dat"

where the file store0.dat in this example contains the line

A;B;

8.3 Storing of 1D variables

All 1D variables which should be stored during simulation must be set in the
%store section of the cemos.par. This can be done in the following form

%store

X[1];

Y[1];

X[2];

Y[2];

or shorter

%store

X[1];Y[1];

X[2];Y[2];

or again shorter

%store

X[1-2];Y[1-2];

Every statement should be closed by ;. It is also possible to include a file which
contains all variables to be stored in the correct syntax:



%store

#include "store.dat"

where the file store.dat in this example contains the line

X[1-2];Y[1-2];

It is not necessary that the variables are numbered consecutively.

8.4 Storing of 2D variables

All variables of types

2D_states

2D_globals

2D_real_derived_from_states+variable

2D_global_derived_from_states+variable

can be stored during simulation. The output step is controlled by the general
simulation setup. All 2D variables which should be stored during simulation
must be set in the %store_2D section of the cemos.par.
This can be done in the following form:

%store_2D

AAA2D;

BBB2D;

ggg2dAAA2D;

Here the first big difference to the storing of 1D variables is obvious: no indices
are given.
This results in the variables being stored for the complete grid, which makes
the handling of stored results much easier. The next restriction is motivated
by the fact that MoViE is currently not able to handle 2D variables directly.
Therefore, the %store_2D section only evaluated if the output format netCDF
with the extension .nc is selected.

When storing in the .outc format, the %store_2D section is simply ignored.

Remark: 2D variables can only be stored to netCDF outputs with the exten-
sion .nc

The default manner of storing 2D variables is the ’matrix’ approach which
means that data are store in the sorting [line-index] [row-index]. This
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leads to a 90 degrees rotation when result files are visualized with programs
like ncview or VisIt. To remedy this it is possible to get the ’co-ordinate’
approach of storing [row-index] [line-index] (comparable to x- and y-
axes coordinates) by conditional compilation (see 4.4.6) which is activated by
inserting the line %setup NC_FLIP in the file model.def. After re-compiling
the model 2D data will be stored in the co-ordinate oriented way and can
directly be processed with the above mentioned and other tools.

9 C-Extensions by CEMoS

9.1 The type real

By CEMoS the one type of variables is added to the standard C variable types.

This type real makes it easy to control the complete numerics of the model and
the integration methods. It also provides safe interfaces between the internal
numerics and the storing of simulation results.
Controlled by the identifier \%numerics in the file model.def all variables of
the type real will be set to the following types:

%numeric single means a #typedef float real

%numeric double means a #typedef double real

%numeric long double means a #typedef long double real

If no line with the identifier %numerics appears in the file model.def the
default definition #typedef float real is used.
With this construction the variable type real is available in every file which
include the the header file struct.h.

9.2 Vectors, matrices and tensors

The following data structures are available for the main basic types (int, float, double)
and for real, as well:

int *ivector(first, last);

float *fvector(first, last);

double *dvector(first, last);

real *vector (first, last);
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int **imatrix(first_row, last_row, first_col, last_col);

float **fmatrix(first_row, last_row, first_col, last_col);

double **dmatrix(first_row, last_row, first_col, last_col);

real **matrix (first_row, last_row, first_col, last_col);

int ***i3tensor(first_row, last_row,

first_col, last_col,

first_lay, last_lay);

float ***f3tensor(first_row, last_row,

first_col, last_col,

first_lay, last_lay);

double ***d3tensor(first_row, last_row,

first_col, last_col,

first_lay, last_lay);

real ***r3tensor(first_row, last_row,

first_col, last_col,

first_lay, last_lay);

The variables holding the indices (first, last, first_row, last_row,

first_col, last_col, first_lay, last_lay) are of type long.

The underlying functions provide an optimized allocation of memory for the
a.m. structures.
Additionally, the access to any element of the more complex types matrix and
tensor is very much faster with these constructions than by simply allocation
memory with standard C methods. Each line of a matrix is identified by a
pointer to a vector and each matrix inside a tensor is identified by a pointer
to a matrix with again vectors a sub-structures. This avoids time consuming
pointer arithmetics during program execution by directly working with pointers
to the memory addresses.
The prototypes for these functions are automatically available by including the
file struct.h, such the use is easy.

Example:

#include "struct.h"

int *example_vector;

float **example_matrix;

real ***example_tensor;

/* Allocate a vector of integers with available indices from 7 to 25 */

example_vector = ivector(7,25);

/* Allocate a matrix of floats with
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available indices from 3 to 17 and from 0 to 25 */

example_matrix = fmatrix(3,17,0,25);

/* Allocate a 3tensor of reals with

available indices from 0 to 10, from 5 to 25 and from 1 to 100 */

example_tensor = r3tensor(0,10,5,25,1,100);

...

In case of allocation errors all functions will stop the execution of the pro-
gram and will give an error message. More details (and some additional stuff)
can be found in the source code of CEMoS in the files constructs.h and
constructs.c

10 Data structures of CEMoS simulation outputs

CEMoS actually provides three different output formats for storing simulation
results:

- .outc default binary format. The .outc format allows names of 80
characters.

- .outa ASCII format. The .outa format allows names of 80 characters.

- .nc is the NetCDF format (see Rew et al. , 1997)). It is mainly used to
make CEMoS simulation results available in environments where no Mo
ViE is used. NetCDF files can be directly read by xmGrace . They are
containing the same amount of information as the .outc files. Informa-
tion about the content of a .nc file can be read by typing the command
ncdump <filename> in a terminal window. Information about the usage
of that program will be displayed by simply typing ncdump.

Remark: ncdump works for all .nc files, even if they were not stored by
CEMoS .

The complete NetCDF interface is described in (Rew et al. , 1997), the part of
the NetCDF interface used in CEMoS and MoViE is described in (Kohlmeier
& Hamberg, 2023).
MoViE supports all three file types (.outb, .outc and .nc). The following
gives a description of the .outc files structure.
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10.1 Data structures of the files mymodel/xxx.outc

The .outc file starts with structural information given in different formats:

(1) total number of stored variables (nvars automatically derived by CEMoS
)

(2) start time of the simulation (start read from cemos.par, normally 0 for
January 1 of year (see (6))

(3) end time of the simulation (endtim read from cemos.par)

(4) maximum timestep of the simulation (maxdelt read from cemos.par)

(5) simulation time between two outputs (outdelt read from cemos.par)

(6) year, where the simulation starts (year read from cemos.par, stored is
max(0,year) )

(7) length of a model’s year (cycle read from cemos.par, normally 360 days
representing 12 months of 30 days.)

(1) is stored as C unsigned int (4 Bytes).
(2) - (7) are stored as C floats (4 Bytes).

(8) relative path to the main model’s directory, stored as string of 80 ASCII
characters (model dir read from cemos.par)

(9) This header is followed by a set of nvars strings of each 80 ASCII charac-
ters. These strings are containing the identifier of a variable and the box
number it is stored for (f.e. ’p1c(137)’ indicates p1c of box 137 being
stored.)

(10) After this block of strings (which may be some ten kilobytes long) the
numerical output of the simulation is stored as follows:
One C float (4 Bytes) is stored in binary format for each variable-box
combination appearing in the string block (9) is stored for all simulation
times between starttime (2) and endtime (3) that are multiples of
outdelt (5). This block may have a length of some megabytes.

11 The mystic recalc globals statement

The setting recalc_globals=1 forces a recalculation of the model without
integration to get global and global_derived_from_states variables re-
calculated before storing simulation results. This is needed if the integration



method calls the model at intermediate interpolation points. Normally the
values of global variables are calculated at the last interpolation point and
therefore this value is stored. This is a well known problem with accurate in-
tegration methods. Even if the differences between the values at the end of
the step and the values at some intermediate points is not serious, the results
might be misinterpreted (f.e in budget computation where total mass conser-
vation is expected). The differences increase if the system is non autonomous
(directly dependent from the actual time, f.e. in the case of a forcing function).
CEMoS provides the possibility to recalculate the values at the end of the step
with the statement recalc_globals=1; in the file cemos.par (the default
setting is recalc_globals=0).
In this case the model is called once again to calculate the global variables
at the sampling point (with the actual simulation time) but without changing
state variable values.

This is also very helpful, if the model is run with different integration methods
on different time steps (operator splitting), and not all derived variables are
affected by all integration methods, but shall be stored for diagnostic purposes.

Remark: No differences in the values of state variables shall occur with or with-
out setting recalc_globals=1 because the integration is not affected by this!!

Under some practical circumstances differences might occur:

• A state variable is directly set within the model to a new value (this is not
allowed in the context of differential equation but may occur if state vari-
ables a misused, f.e. for diagnostic purposes.). During the recalculation
such a state variable gets a new value which may force the integration
routine to a slightly different behavior. If f.e. the state is set to a total
different value the integration adapts the time step and this may lead to
differences in all state variables.

• A global variable which determines the rate of a state variable is calculated
at the wrong position in the model code. Globals are initialized with zero
by CEMoS . Such no warning is given if a global is used before setting
it to its right value. Because CEMoS passes through the model once
before starting the simulation, normally no problems occur. But if the
global itself is determined by the value of another state variables things
go wrong. The following model will show the effect:

#include "struct.h"

void model(void)

{



SX[1]=a[1]*X[1];

SY[1]=Y[1];

a[1]=Y[1];

}

The state variables X[1],X[2],Y[1],Y[2] get all the initial value 1. The
global variable a[1] is initialized by zero (CEMoS does it). The time step
is fixed to 1. The results are taken from a simulation with a second order
Runge-Kutta integration which has an intermediate calculation point:

recalc=0 recalc=1
Time x(1) x(1)
0.00000 1.00000 1.00000
1.00000 2.50000 2.50000
2.00000 18.12500 16.56250

12 Handling of data files

12.1 Reading csv-files

CEMoS provides some routines for reading csv-files (comma separated values).
The files to be read must habe the following structure:

The first line must be a header line. This is only for convenience to describe
the following lines. No more header lines are allowed! The following arbitrary
number of lines contain the data. The first column of a line must be a time
stamp in decimal, the following columns contain the data. The columns must
be seperated by a comma. A common data file is given by f.e.

time,value1,value2

1.0,5.5,7.0

2.0,5.4,7.6

...

All columns must have the same length, the time stamps must be in increasing
order!

Such a file can be read by the command read_csv. The call of read_csv

needs three arguments. The first one is a string containing the name of the
data file realtive to the code file where it is called. The second argument con-
tains the column to be read and the third the name of a vector the data should



be stored. The length of the vector must match the number of data. To get
the correct number, read_csv can be called with column 0 and and dummy,
the return value is the number of data sets.

Reading the data must only be done once during simulation time if the vectors
are declared as static.

12.2 Interpolation of data

The data must not be equidistant and the number must not match the simula-
tion time. Thus it is often neccessary to interpolate them. CEMoS provides the
routines lin_int and no_interpolation. For customizing the interpolation
see 12.4.

12.2.1 Linear interpolation

lin_int needs three arguments. The first one is the vector containg the time
stamps, the second the vector containing the corresponding values and the
third is the pointer to the number of data. lin_int makes a linear inter-
polation for the actual sim_time between to neighboured data points, while
no_interpolation holds the last value until sim_time matches the next time
stamp.

If the CEMoS variable cycle is set, the data are repeated after sim_time

reaches a multiple of cycle. and no_interpolation.

For a better control of the interpolation a second routine lin_int2 exist which
is called by four arguments where the first (additional) one is the time at which
the interpolated value should be calculated. This is useful if data and simulation
time have an offset. If lin_int2 is called with sim_time as first argument
both routines behave equal.

12.2.2 Step functions

no_interpolation needs four arguments. no_interpolation needs as first
argument either __RIGHTSLOPE or __LEFTSLOPE, the second one is the vector
containg the time stamps, the third the vector containing the corresponding
values and the fourth is the pointer to the number of data.:

no_interpolation holds the last value until sim_time matches the next time
stamp.



For a better control of the interpolation a second routine no_interpolation2

exist which is called by five arguments where the first (additional) one is the
time at which the value should be evaluated. If no_interpolation2 is called
with sim_time as first argument both routines behave equal.

12.3 Example

Reading data from a file called data.csv which contains the following lines:a

ETW(1)/tim/,ETW(1)/val/

1,8

10,5

30,-2

63,5

120,11

149,15

185,17

210,22

239,17

247,16

253,16

280,15

310,8.3

338,-1

345,-2

The model code (model.c):

#include "struct.h"

#define datafile "./main/data1.csv"

real *dummy=NULL;

static real *time,*value;

static int init=1;

static int num=0;

void model(void)

{

if (init==1)

{

init = 0;

/* Determing number of values */



num=read_csv(datafile,0,dummy);

/* Preparing vectors */

time = vector(1,num);

value= vector(1,num);

/* Reading values */

if (read_csv(datafile,1,time) != num) nrerror("Error in datafile");

if (read_csv(datafile,2,value) != num) nrerror("Error in datafile");

} /* end if (init==1) */

/* Model code */

/* Linear interpolation at sim_time */

ETW[1] = lin_int(time,value,&num);

/* Step function at sim_time */

ETW[2] = no_interpolation(__LEFTSLOPE,time,value,&num);

/* Step function at sim_time */

ETW[3] = no_interpolation(__RIGHTSLOPE,time,value,&num);

}

The time stamps are stored in the vector time, the data in the vector value.
Both are initialized as vector (see 9.2) starting at index 1 and ending at index
num. The number of data points num is determined by the call of read_csv
with column 0 and a dummy pointer.

The time stamps and values are read by two calls of read_csv with the corre-
sponding column number. If some thing si wrong with the number of data, an
error is given.

The reading of data is done only once (init==1). In this case the vectors
containing the data and the number of data must be defined as static.

During the simulation the linear interpolated data are read into the global
variable ETW[1], the step function is read into ETW[2] (__LEFTSLOPE) and
ETW[3] (__RIGHTSLOPE). The results are shown in figure 12.1.

12.4 Tricks

The interplay of the data time steps, the integration step, the integration
method and the outdelt is always a complicated task.
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Figure 12.1: The data (red stars) and the result from the linear interpolation, the
left hand side step function (mid) and the right hand side step function (right).

The interpolation result depends on

• storestart (8)

If the simulation results are stored before integration storestart=0 the
last time step is taken into account for the interpolation, if storestart=1
the interpolation starts at the first data point

• recalc_globals (11)

If an integration method with intermediate time steps is used, the results
differ depending on the setting of recalc_globals. If it is set to 0 the
data are interpolated at the last intermediate time step of the integration,
otherwise at the end of the integration step. It is recommended –to avoid
this problem– that reading the data is done in a mode (6.2) with a fixed
time step (6). Sometime it is useful to prepare a special mode for reading
the data without integration (method=99).

13 Starting with CEMTK

To start CEMTK go to the directory where the model (the file cemos.par) is
located or where a new one should be created and give the command

cem

The CEMTK window appears (figure 13.1).



Figure 13.1: Main window of CEMTK .

14 Controlling the model setup

14.1 [Stop Running Model] (Linux only)

A running simulation can be stopped. This is only possible if the model is not running
in background.

14.2 Info window 1

Within this window all information during compilation, simulation etc is shown.



14.3 Info window 2

Within this window all parameter changes of the actual simulation are shown. For
information on parameter changes see 5.

14.4 [Current Directory] and [Model Directory]

Here the current directory is shown. It can be changed by [Browse] . If f.e. CEMTK
is started from anywhere and your model directory is located in $HOME/mymodel,
then go the directory $HOME and mark mymodel. Pressing [OK] resets the current
directory to $HOME/mymodel. If there a file cemos.par exists CEMTK will read all
information including the model directory from it. If the file cemos.par doesn’t exist
only [create New Model] is active.

14.5 [Create New Model]

If neither a file cemos.par nor a main directory exists in the current directory an
”empty” model will be created there. This means that a file cemos.par is created
with default settings and a model directory main is created which includes the files
model.def, par.def and model.c. This files may be edited by [Edit Simulation
parameters] , [Edit Code Files] and [Edit Parameter Files] . How to built a
model under CEMoS see 4.2.

14.6 [Compiler-Flags]

A menue opens holding compiler flags. The flags affect in general the compilation
of the model files and the CEMoS files (some flags are omitted for the building of
internal files and preprocessing). The evaluated compile flags for every file can be
traced in the info window during compilation.

In the upper part useful combinations of flags are predefined:

default: -O2 -Wall

debug: -g -pedantic -D__verbose__ -Wall -Wredundant-decls

gprof: -pg -static

If -pg -static is selected the model will also be linked with -pg -static.

In the lower part the compiler flags can be changed manually.
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14.7 [Compile]

Starts the compiler. The model in the model directory will be compiled from scratch,
all old object-files will be deleted before compilation. After the successful compilation
the objects will be archived in a file cemos.a automatically and all CEMoS stuff will
be deleted. The executable file cemos-model will be moved to the directory above
(current directory). If the all files are compiled with -g , the CEMoS stuff and all
object files will remain in the directory. Otherwise intermediate files will be removed
after compilation.

14.8 [Update]

After modifying the model code it is not necessary to compile the whole model. [up-
date] compiles all .c-files which are younger than the archive file cemos.a and
renews the archive.

Note: If parameter files have been modified (except the %change statements) the
whole model has to be compiled.

14.9 [Clean]

Removes all .o-files, core-files %-files and all CEMoS stuff from the model direc-
tory. Only the user defined model files remain. This is automatically done before
compilation.

14.10 [Uninstall] (optional)

If the model contains an install script to link model code from other locations into
the model directory this links will be removed.

15 Controlling the simulation

15.1 [Background]

If active the simulations will start in the background, no output is displayed in the
info windows, but in the .log-file (see [Start!] ).
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The following variables may be changed within CEMTK . All settings are valid during
a CEMTK session but will not be saved in the file cemos.par. For the meaning of
these variables see 5.

15.2 [Endtime],[Outdelt], [Storetime]

Pull down menus which holds the values from the cemos.par in the first line.

15.3 [Multi]

Only valid if the model has been set up for operator splitting
(see 5). Depending on the setting of Multi the buttons [Maxdelt] , [Method] ,
[Accuracy] will change their behavior. They can be set for each integration method
independently.

15.4 [Maxdelt]

If Multi is set to one a pull-down menu occurs which contains the setting of Maxdelt
from the cemos.par in the first line.
If Multi is set to n>1 n menus occur for the different integration methods. Each
contains the setting of Maxdelt in the file cemos.par in the first line. If CEMTK is
started with Multi=1 from the cemos.par all methods are set two the Maxdelt of
the first integration method (%integration par1). If the file cemos.par contains
Maxdelt for n methods Maxdelt will be read from it for every method into CEMTK
.

15.5 [Method]

The numerical integration methods can be chosen. Concerning the role of [Multi]
see [Maxdelt] , concerning the numerical methods see 6.

15.6 [Accuracy]

This setting is only valid for the Runge-Kutta methods. Concerning the role of
[Multi] see [Maxdelt] , concerning the numerical methods see 6.

15.7 [Start !]

Starts the simulation. A window appears where the result filename can be chosen.
By two radio buttons the output format can be selected to be outc or .nc. If [store



as result] is chosen the simulation results will be stored in the file result.outc

resp. result.nc and the values of all state variables of the last simulation steps
will be stored in result.info and all output from the simulation will be stored in
result.log.

Note: CEMTK will overwrite an existing file result.* without a warning.

If a filename is specified (f.e. myresult) the simulation results, the log and the
info will stored under the specified name (myresult.outc, myresult.log and
myresult.info) in the current directory. If an .outc file with the same name
(myresult.outc) already exist CEMTK will not start the simulation. In this case
another name can be chosen or the result file (myresult.outc) must be renamed
(see [rename result file] ) or removed.

If [Background] is active no information of the simulation will be shown in the
info windows and the simulation starts in the background. Otherwise all output is
displayed in the info windows and additionally stored in the .log file. In this case
the simulation can be stopped (Linux only).

15.8 [Start Run] -evaluating cin-files

This is an alternative to start a simulation.
A window appears where a *.cin (cin stands for CEMoS -initialisation) file can
be chosen. Files of this type may contain any subset of parameters and controls
which normally appear in the cemos.par. These settings from the selected *.cin

file will override the settings which are stored in the cemos.par. The *.cin files are
processed by the C-preprocessor before the simualtion starts and may thus contain
all useful preprocessor directives which may be needed (e.g. %include). If e.g. the
ABC.cin is selected, the according result file will get the name ABC.outc.

15.9 [Start Batch]-evaluating bat-files

This is an alternative to start a simulation.
A model simulation will be started for every line in the selected .bat file. The .bat

file can contain parameter changes for an arbitrary number of variables. This file
overrules the settings in the .def files. The settings in every line must be separated
by ; and every line must be closed by ;. The result files will be named automatically.
F.e.: If the file sensitivity.bat contains the following lines:

a=1.0;b=0.0;

a=0.0;b=1.0;



a=1.0,b=1.0;

three simulations are started where the variables a and b (which must be defined in
any .def-file, get these values. The files are named a10b10.outc, a00b10.outc
and a10b10.outc and are stored in a directory named similar to the bat-file (without
extension).
Another possibility is to define a range of values for a parameter for sensitivity anal-
ysis.
If the file sensitivity.bat contains the following lines:

%series

sigma:5.0:15.0:1

eleven simulations will be run, the parameter sigma getting values from 5.0 to 15.0 in
steps of 1. The results will be written to a directory sigma sens and the result files
will be named automatically, again. Additionally, a file (sigma.lst in this example)
is written, that holds the names of all result files produced in this sequence. This file
can be used to get an animated phase plot running through this sequence in MoViE
(see Kohlmeier & Hamberg, 2023).

Also *.cin files (see 15.8) may be included to have different complex scenarios run
from a batch file. In this case the batch file may look as follows:

#include A1.cin

#include A2.cin

#include A3.cin

Each line will result in one simulation run using the setting from the respective *.cin

file. The according result files will get the names A1.outc, A2.outc and A3.outc.
Remark: Only one parameter will be evaluated for one sequence. Any more param-
eters will be ingnored!

Remark: This functionality may not work in background on all machines.

16 Editing the model files

16.1 [Rename Result File]

A chosen result file may be renamed, the .log-file and the .info-file will be renamed,
too, if existing. If a file with the new name already exists CEMTK gives an warning
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in the info window and the name stays unchanged. The existing file will not be
overwritten.

16.2 [Edit Code Files]

A file select box occurs and shows all .c-files in the model directory. After selecting
a file it can be opened by [open] . A text editor opens in the background and the
code may be modified. After saving it the model must be updated or compiled.

16.3 [Edit Parameter Files]

A file select box occurs and shows all .par-files in the model directory. After selecting
a file it can be opened by [open] . A text editor opens in the background and the
parameter file may be modified. After modifications in the #change block of the file
the model can be started without recompiling. Any other changes will be valid only
after recompilation.

16.4 [Edit Run Files] – the cin-files

Run files .cin can be edited (see also [Start Run] ).

16.5 [Edit Batch Files] – the bat-files

Batch files .bat can be edited (see also [Start Batch] ).

16.6 [Edit Log Files] – the log-files

A file select box occurs and shows all .log-files. These files are only for information.

16.7 [Edit Simulation Parameters] – the cemos.par

The file cemos.par is opened in a text editor. Here all simulation parameters can be
modified. This editor blocks CEMTK . After saving the changes the editor must be
left to continue with CEMTK . The reason for this is that after quitting all changes
will read again by CEMTK and all buttons will be updated. This means that changes
made in the cemos.par will overrule the actual settings in CEMTK .
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17.1 [Options]

Here different setting for CEMTK can be selected:
[Editor]
The editor used with CEMTK can be set. If no editor is set CEMTK uses kwrite
for Linux and WordPad on Windows.
Remark: When running on Windows it turned out to be very helpful to select the de-
sired editor because the path to wordpad.exe is changing from version to version ;-).

[Select Button/Label Font]
With a font selector the font for buttons and labels can be selected from the fonts
available for the running window system.

[Select Info Window Font]
With a font selector the font for the output in the information windows can be se-
lected from the fonts available for the running window system.

[Output Type]
By two radio buttons the default output type for simulation runs can be selected:
.outc or .nc according to section 10.

All settings will take effect after [Apply & Exit] . [Cancel] closes this window
ingnoring any changes been made.

17.2 [DDD] (Linux only)

Starts the debugger ddd. For further information see man page of ddd. The settings
for simulation parameter are read from cemos.par and not from the CEMTK menus
when the model is debugged.

17.3 [Insight] (Linux only)

Starts the debugger insight if installed. For further information see man page of
insight. The settings for simulation parameter are read from cemos.par and not
from the CEMTK menus when the model is debugged.

17.4 [Editor]

Opens the selected editor with an empty unnamed file in the model directory. This
file can be saved under the desired filename.



17.5 [Terminal] (Linux only)

Opens a terminal window. The working directory is set to the model path.

17.6 Tiger Graphics MoViE ]

Starts the graphic tool MoViE if installed. For further information see Kohlmeier &
Hamberg (2023).
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